ON TELGÁRSKY'S QUESTION CONCERNING β -FAVORABILITY OF THE STRONG CHOQUET GAME

LÁSZLÓ ZSILINSZKY

ABSTRACT. Answering a question of Telgársky in the negative, it is shown that there is a space which is β -favorable in the strong Choquet game, but its nonempty W_{δ} -subspaces are of the 2nd category in themselves.

1. Introduction

One of the well-known applications of the Banach-Mazur game [HMC] (also known as Choquet game [Ke]) is a characterization of Baire topological spaces (i.e. spaces where nonempty open subspaces are of the 2nd category in themselves); namely, a space is Baire iff the first player in the Banach-Mazur game has no winning strategy [Ox, Kr]. The strong Choquet game [Ke] is a modification of the Banach-Mazur game that also yields nice characterizations of various completeness-type properties (see below). In particular, Telgársky [Te] noticed - somewhat analogously to the above Baire space characterization - that in any topological space, if the first player in the strong Choquet game has no winning strategy, then the nonempty W_{δ} -subspaces are of the 2nd category in themselves (where W_{δ} -sets are generalizations of G_{δ} -sets introduced by Wicke and Worrell [WW]), and asked whether it is actually a characterization. This indeed is the case, e.g., in 1st countable T_1 -spaces [Zs]; however, we will show that a counterexample exists in the non-1st-countable case, and so Telgársky's conjecture fails.

First we introduce the relevant notions and terminology: let \mathcal{B} be a base for a topological space X, and denote $\mathcal{E} = \{(x, U) \in X \times \mathcal{B} : x \in U\}$. In the strong Choquet game Ch(X) players β and α alternate in choosing $(x_n, V_n) \in \mathcal{E}$ and $U_n \in \mathcal{B}$, respectively, with β choosing first, so that for each $n \in \omega$, $x_n \in U_n \subseteq V_n$, and $V_{n+1} \subseteq U_n$. The play $(x_0, V_0), U_0, \ldots, (x_n, V_n), U_n, \ldots$ is won by β , if $\bigcap_n V_n = \emptyset$; otherwise, α wins. A strategy in Ch(X) for β is a function $\sigma : \mathcal{B}^{<\omega} \to \mathcal{E}$ such that $\sigma(\emptyset) = (x_0, V_0)$, and $\sigma(U_0, \ldots, U_{n-1}) = (x_n, V_n)$ with $V_n \subseteq U_{n-1}$ for all $(U_0, \ldots, U_{n-1}) \in \mathcal{B}^n$, $n \geq 1$. A strategy σ for

²⁰¹⁰ Mathematics Subject Classification. Primary 91A44; Secondary 54E52, 54B20. Key words and phrases. strong Choquet game, Vietoris topology, Baire category, W_{δ} -set, Tychonoff square.

 β is a winning strategy, if β wins every run of Ch(X) compatible with σ . We will say that Ch(X) is β -favorable, provided β has a winning strategy in Ch(X). Strategies for α in Ch(X), and α -favorability of Ch(X) can be defined analogously [Ke].

The strong Choquet game was introduced by Choquet in [Ch], who showed that in a metrizable space X, α has a winning strategy in Ch(X) iff X is completely metrizable. Later, Debs [De] and $Telg\acute{a}rsky$ [Te] independently showed that if X is metrizable, then β has a winning strategy in Ch(X) iff X is contains a closed copy of the rationals (i.e. iff X is not hereditarily Baire). The strong Choquet game has been studied in non-metrizable settings as well (cf. [Po],[GT],[Ma],[CP],[BLR],[DM],[Zs]).

Let $Y \subseteq X$. A sieve of Y (cf. [CCN], [Gr]) in X is a pair (G, T), where (T, <) is a tree of height ω with levels T_0, T_1, \ldots , and G is a function on T with X-open values such that

- $\{G(t): t \in T_0\}$ is a cover of Y,
- $Y \cap G(t) = \bigcup \{Y \cap G(t') : t' \in T_{n+1}, t' > t\}$ for each n, and $t \in T_n$,
- $t \le t' \Rightarrow G(t) \supseteq G(t')$ for each $t, t' \in T$.

We will say that Y is a W_{δ} -set in X, if Y has a sieve (G,T) in X such that $\bigcap_n G(t_n) \subseteq Y$ for each branch (t_n) of T. A G_{δ} -set is also a W_{δ} -set. A Tychonoff space is sieve complete iff it is a W_{δ} subspace of a compact space iff it is a continuous open image of a Čech-complete space [WW, Theorem 4]; in particular, sieve complete spaces are of the 2nd Baire category.

Denote by CL(X) the set of all nonempty closed subsets of a T_1 -space X, and for any $S \subseteq X$ put $S^- = \{A \in CL(X) : A \cap S \neq \emptyset\}$ and $S^+ = \{A \in CL(X) : A \subseteq S\}$. The Vietoris topology [Mi] τ_V on CL(X) has subbase elements of the form U^- and U^+ , where $\emptyset \neq U \subseteq X$ is open; so a base for τ_V is

$$\mathcal{B}_V = \{ U^+ \cap \bigcap_{i \le n} U_i^- : n \in \omega, \ U, U_i \subseteq X \text{ open} \}.$$

The space $(CL(X), \tau_V)$ is T_2 (resp. T_3) iff X is T_3 (resp. T_4), and $(CL(X), \tau_V)$ is compact iff X is compact [Mi]. If A is an open (resp. closed) subspace of X, then CL(A) is an open (resp. closed) subspace of CL(X); X embeds as a subspace in CL(X) (it embeds as a closed subspace iff X is T_2). The following lemma will be used in the main result:

Lemma 1.1. [Mi, Lemma 2.3.1]

If $U^+ \cap \bigcap_{i \leq n} U_i^-$, $V^+ \cap \bigcap_{j \leq m} V_j^- \in \mathcal{B}_V$, then the following are equivalent:

- (i) $U^+ \cap \bigcap_{i \le n} U_i^- \subseteq V^+ \cap \bigcap_{j \le m} V_j^-$
- (ii) $U \subseteq V$, and for every $j \leq m$ there is $i \leq n$ such that $U_i \subseteq V_j$.

2. Main Result

The Tychonoff square is defined as $X = (\omega_1 + 1) \times (\omega_1 + 1) \setminus \{(\omega_1, \omega_1)\}$, where ω_1 is the first uncountable ordinal with the order topology.

Theorem 2.1. If X is the Tychonoff square, then

- (i) Ch(CL(X)) is β -favorable, and
- (ii) every nonempty W_{δ} -subset of CL(X) is of the 2nd category in itself.

Proof. (1) We will construct a winning strategy σ for β in Ch(CL(X)). Denote $\Delta = \{(x,x) \in X : x \in \omega_1\}$, and put $\sigma(\emptyset) = (A_0, \mathbf{V}_0)$, where $A_0 = \{\omega_1\} \times \omega_1 \cup \{(x_0, y_0)\}$, and $\mathbf{V}_0 = (X \setminus \Delta)^+ \cap \{(x_0, y_0)\}^-$, where $x_0 > y_0$, and $(x_0, y_0) \notin \Delta$ is an isolated point of X. If $\mathbf{U}_0 = W_0^+ \cap \bigcap_{i \leq k_0} W_{0,i}^- \in \mathcal{B}_V$ is α 's first step, then $A_0 \in \mathbf{U}_0 \subseteq \mathbf{V}_0$. It follows that $\{\omega_1\} \times \omega_1 \subset W_0$, so we can find $x_1 > x_0$ such that $(x_1, x_0) \in W_0$ is isolated in X. Denote $y_1 = x_0$, $A_1 = A_0 \cup \{(x_1, y_1)\}$, $\mathbf{V}_1 = \mathbf{U}_0 \cap \{(x_1, y_1)\}^-$, and put $\sigma(\mathbf{U}_0) = (A_1, \mathbf{V}_1)$.

Assume that given $n \in \omega$ and $j \leq n$, we have defined

$$(A_i, \mathbf{V}_i) = \sigma(\mathbf{U}_0, \dots, \mathbf{U}_{i-1})$$
 whenever $(\mathbf{U}_0, \dots, \mathbf{U}_{i-1}) \in \mathcal{B}_V^j$

so that $\{\omega_1\} \times \omega_1 \cup \{(x_j, y_j)\} \subset A_j$ for some isolated point (x_j, y_j) of X such that

$$y_0 < x_0 = y_1 < x_1 = y_2 < \dots < x_{n-1} = y_n < x_n.$$

Let $\mathbf{U}_n = W_n^+ \cap \bigcap_{i \leq k_n} W_{n,i}^- \in \mathcal{B}_V$ be α 's next choice, i.e. $A_n \in \mathbf{U}_n \subseteq \mathbf{V}_n$. It follows that $\{\omega_1\} \times \omega_1 \subset W_n$, so we can find $x_{n+1} > x_n$ such that $(x_{n+1}, x_n) \in W_n$ is isolated in X. Denote $y_{n+1} = x_n$, $A_{n+1} = A_n \cup \{(x_{n+1}, y_{n+1})\}$, $\mathbf{V}_{n+1} = \mathbf{U}_n \cap \{(x_{n+1}, y_{n+1})\}^-$, and put $\sigma(\mathbf{U}_0, \ldots, \mathbf{U}_n) = (A_{n+1}, \mathbf{V}_{n+1})$.

CLAIM 1. σ is a winning strategy for β in Ch(CL(X)).

Indeed, let β play according to σ , and assume there exists some $A \in \bigcap_n \mathbf{V}_n$. Then $A \in \mathbf{V}_0$, so $A \subset X \setminus \Delta$, moreover, $B = \{(x_n, y_n) : n \in \omega\} \subseteq A$. Since the sequences $(x_n), (y_n)$ converge to a common $x \in \omega_1$, then $(x, x) \in \overline{B} \subseteq A \subset X \setminus \Delta$, a contradiction.

(2) Let \mathcal{M} be a nonempty W_{δ} -subset of CL(X), and (G,T) a sieve of \mathcal{M} in CL(X) witnessing that \mathcal{M} is a W_{δ} -set.

CLAIM 2. $\exists M \in \mathcal{M}$ which is compact in X, i.e. there is some $\lambda < \omega_1$ such that $M \subseteq K(\lambda)$, where $K(\lambda) = [0, \lambda] \times (\omega_1 + 1) \cup (\omega_1 + 1) \times [0, \lambda]$.

Indeed, take any $M_0 \in \mathcal{M}$. Let (t_n) be a branch in T so that $M_0 \in G(t_n)$ for each n, and without loss of generality, assume that each $G(t_n)$ is a τ_V -basic element, i.e. $G(t_n) = G_n^+ \cap \bigcap_{i \leq m_n} U(z_{n,i})^- \in \mathcal{B}_V$, where $m_n \in \omega$, G_n is

open in X, and $U(z_{n,i}) \subseteq G_n$ is a basic (compact) neighborhood of $z_{n,i} \in X$. Since $(G(t_n))_n$ is decreasing, it follows from Lemma 1.1 that, given n and $i \leq m_n$, there is $j \leq m_{n+1}$ such that $U(z_{n+1,j}) \subseteq U(z_{n,i})$, so we can assume that $m_{n+1} > m_n$, and that for all $i \leq m_n$, $U(z_{n+1,i}) \subseteq U(z_{n,i})$. Fix $n \in \omega$, and $i \leq m_n$. Then $M_0 \cap \bigcap_{p \geq n} U(z_{p,i})$ is a nonempty compact set, so we can choose $u_{n,i} \in M_0 \cap \bigcap_{p \geq n} U(z_{p,i})$. Then $M = \{u_{n,i} : n \in \omega, i \leq m_n\}$ is clearly compact, moreover, $M \subseteq M_0 \subset G_n$ and $M \cap U(z_{n,i}) \neq \emptyset$ for each $n \in \omega, i \leq m_n$; thus, $M \in \bigcap_n G(t_n) \subseteq \mathcal{M}$.

It follows by Claim 2, that $\mathcal{M}_0 = \mathcal{M} \cap K(\lambda)^+$ is nonempty, and, as an open subspace of the W_{δ} -set \mathcal{M} , it is a W_{δ} -set. Furthermore, since $K(\lambda)$ is a clopen compact subspace of X, $CL(K(\lambda))$ is a clopen compact subspace of CL(X). In summary, \mathcal{M}_0 is a W_{δ} -subset of the compact $CL(K(\lambda))$, so it is sieve-complete and, thus, of the 2nd category in itself. This implies that \mathcal{M} is of the 2nd category in itself, since \mathcal{M}_0 is an open subspace of \mathcal{M} . \square

References

- [BLR] H. R. Bennett, D. J. Lutzer and G. M. Reed, *Domain representability* and the Choquet game in Moore and BCO-spaces, Topology Appl. 155 (2008), 445–458.
- [CP] J. Cao and Z. Piotrowski, Two variations of the Choquet game, Kyungpook Math. J. 44 (2004), 495–504.
- [CCN] J. Chaber, M. M. Coban and K. Nagami, On monotonic generalizations of Moore spaces, Čech complete spaces and p-spaces, Fund. Math. 84 (1974), 107–119.
- [Ch] G. Choquet, Lectures on Analysis I., Benjamin, New York, 1969.
- [De] G. Debs, Espaces héréditairement de Baire, Fund. Math. 129 (1988), 199–206.
- [DM] F. G. Dorais and C. Mummert, Stationary and convergent strategies in Choquet games, Fund. Math. 209 (2010), 59–79.
- [GT] F. Galvin and R. Telgársky, Stationary strategies in topological games, Topology Appl. 22 (1986), 51–69.
- [Gr] G. Gruenhage, *Generalized metric spaces*, in Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984.
- [HMC] R. C. Haworth and R. A. McCoy, *Baire spaces*, Dissertationes Math. 141 (1977), 1–77.
- [Ke] A. S. Kechris, *Classical Descriptive Set Theory*, Springer, New York, 1994.

- [Kr] M. R. Krom, Cartesian products of metric Baire spaces, Proc. Amer. Math. Soc. 42 (1974), 588–594.
- [Ma] K. Martin, Topological games in domain theory, Topology Appl. 129 (2003), 177–186.
- [Mi] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182.
- [Ox] J. C. Oxtoby, Cartesian products of Baire spaces, Fund. Math. 49 (1961), 157–166.
- [Po] E. Porada, Jeu de Choquet, Colloq. Math. 42 (1979), 345–353.
- [Te] R. Telgársky, Remarks on a game of Choquet, Colloq. Math. 51 (1987), 365–372.
- [WW] H. H. Wicke and J. M. Worrell, On the open continuous images of paracompact Čech complate spaces, Pacific J. Math. 37 (1971), 265–275.
- [Zs] L. Zsilinszky, On β -favorability of the strong Choquet game, Colloq. Math. 125 (2011), 233–243.

Department of Mathematics and Computer Science, University of North Carolina at Pembroke, Pembroke, NC 28372, USA

E-mail address: laszlo@uncp.edu